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1  | INTRODUCTION

Because of the limited supply of donor organs for transplantation, 
decisions regarding transplant candidacy and donor organ alloca‐
tion are influenced by expectation of post‐transplant survival.1 

Maximizing utility of transplantation and optimizing donor‐re‐
cipient matching depend on accurate assessment of recipients’ 
post‐transplant mortality risk. In the US, accurate prediction of 
post‐transplant survival is also important for fair evaluation of 
transplant center performance. Specifically, transplant centers can 
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Abstract
Background: Optimizing transplant candidates’ priority for donor organs depends on 
the accurate assessment of post‐transplant outcomes. Due to the complexity of 
transplantation and the wide range of possible serious complications, recipient out‐
comes are difficult to predict accurately using conventional multivariable regression. 
Therefore, we evaluated the utility of 3 ML algorithms for predicting mortality after 
pediatric HTx.
Methods: We identified patients <18 years of age receiving HTx in 2006‐2015 in the 
UNOS Registry database. Mortality within 1, 3, or 5 years was predicted using clas‐
sification and regression trees, RFs, and ANN. Each model was trained using cross‐
validation, then validated in a separate testing set. Model performance was primarily 
evaluated by the area under the receiver operating characteristic (AUC) curve.
Results: The training set included 2802 patients, whereas 700 were included in the 
testing set. RF achieved the best fit to the training data with AUCs of 0.74, 0.68, and 
0.64 for 1‐, 3‐, and 5‐year mortality, respectively, and performed best in the testing 
data, with AUCs of 0.72, 0.61, and 0.60, respectively. Nevertheless, sensitivity was 
poor across models (training: 0.22‐0.58; testing: 0.07‐0.49).
Discussion: ML algorithms demonstrated fair predictive utility in both training and 
testing data, but the sensitivity of these algorithms was generally poor. With the 
registry missing data on many determinants of long‐term survival, the ability of ML 
methods to predict mortality after pediatric HTx may be fundamentally limited.
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be penalized by the Centers for Medicare & Medicaid Services if 
their performance does not meet expectations based on risk‐ad‐
justed outcomes.2,3 Although these issues have placed statistical 
prediction of recipient survival at the forefront of the debate over 
donor organ allocation, the complexity of organ transplantation 
and the wide range of possible serious complications mean that 
recipient outcomes are difficult to predict accurately. This prob‐
lem is especially pronounced in pediatric transplantation, where 
analysis of small cohorts can introduce error into predictive mod‐
els. In the case of HTx, existing clinical risk scores exhibit AUC 
(AUC, a global measure of model fit) of 0.48‐0.77, indicating pre‐
dictive values that range from acceptable (AUC > 0.7) to no better 
than chance (AUC = 0.5).4-7 In studies of pediatric HTx recipients, 
reported AUCs of multivariable regression models have ranged 
between 0.67 and 0.78, similarly demonstrating limited accuracy 
in predicting post‐transplant outcomes.8,9 In effect, published 
models are only able to discriminate between low‐ and high‐risk 
patients 67%‐78% of the time, indicating that survival cannot be 
reliably predicted.

Traditionally, risk scores for post‐transplant outcomes, such as 
the IMPACT, have been generated using multivariable logistic or 
Cox proportional hazards regression.7 The SRTR, which reports 
transplant outcomes in the US, uses models that describe graft and 
patient survival using Cox proportional hazards regression.10 These 
models are specific to age‐group (pediatric vs. adult) and organ type, 
and include a selection of recipient and donor variables from the 
UNOS registry that were found to produce the best‐fitting model.10 
The models are refit in each Program‐Specific Report cycle to cap‐
ture changing predictors of transplant outcomes.10

In contrast to regression‐based approaches, ML is rapidly 
emerging as a valuable tool for predicting surgical outcomes. 
For example, ML algorithms have been reported to significantly 
enhance prediction of outcomes following neurosurgery, when 
compared to logistic regression.11 ML has also been proposed 
to improve prediction of transplant outcomes. Recently, several 
studies have attempted to improve HTx outcome prediction using 
ML techniques in adults or combined pediatric and adult popu‐
lations.12-18 Compared to regression‐based modeling approaches, 
ML algorithms can capture more complex interactions between 
characteristics, which may result in improved predictions of trans‐
plantation outcomes. A variety of ML techniques, including ANN, 
classification and regression trees (CART), RF, support vector ma‐
chines, and naïve Bayes classifiers, have been used to predict out‐
comes of organ transplantation.

Despite the conceptual appeal of ML algorithms, prior studies have 
demonstrated variable predictive utility of ML approaches in this set‐
ting (AUC: 0.54‐0.84).12,13,15,16,18 Understanding the performance of 
ML algorithms for predicting pediatric HTx outcomes could inform fu‐
ture decisions as to whether ML‐based algorithms should be used in 
candidate selection and allocation of donor organs. Therefore, we com‐
pared the performance of 3 ML algorithms for predicting all‐cause mor‐
tality after pediatric HTx. We hypothesized that all ML methods would 
demonstrate high predictive utility for mortality after pediatric HTx.

2  | METHODS

This study was considered exempt from review by the Institutional 
Review Board at Nationwide Children's Hospital due to the deidenti‐
fied nature of the UNOS Registry database. We identified patients 
aged <18 years in the UNOS Registry database who underwent first‐
time HTx between the years 2006 and 2015, excluding patients who 
underwent concurrent lung transplantation. The primary outcome 
was all‐cause mortality within 1 year (for transplants performed in 
2006‐2015), with secondary outcomes including mortality within 3 
or 5 years (for transplants performed in 2006‐2013 or 2006‐2011, 
respectively). Patients were eligible for analysis of a given outcome 
if their mortality status was known at that time point. Vital status 
was ascertained by transplant centers and mandatorily reported to 
UNOS. Patients were excluded from analysis if they were re‐trans‐
planted or lost to follow‐up before a given time point.

We tested three ML algorithms that have been recently used in 
HTx outcomes research: ANN, CART, and RF.12,14-16,18 ANNs are de‐
signed to mimic biological neural processing and consist of weighted 
connections between neurons. As inputs flow through the system, 
neurons respond by firing at certain thresholds, producing the 
final output. In CARTs, a type of decision tree, a sample is divided 
into branches based on input characteristics until a final output is 
reached. RFs are an ensemble classifier composed of a collection of 
independent decision trees.19 Variables for each algorithm were se‐
lected from recipient and donor data available at transplantation. In 
line with prior studies, variables with >10% missing values were ex‐
cluded from consideration,17,20 and data were split randomly as 80% 
training and 20% testing (stratified on patient mortality at last known 
follow‐up, to maintain approximately even mortality rates between 
training and testing sets).21 Using the training data, categorical mea‐
sures were divided into binary variables to retain clinically relevant 
distinctions between categories, while eliminating potentially inac‐
curate ordinal relationships between categories. For highly collinear 
variable pairs, the variable having the largest mean absolute correla‐
tion with other variables in the training set was excluded from the 
set.22 Variables with near‐zero variance were also removed from the 
training set. Missing values were imputed separately in training and 
testing data using single imputation by predictive mean matching. 
For ANNs, continuous variables were normalized to have a mean of 0 
and a variance of one within the training data for a given outcome, so 
that all predictors would initially be given equal importance. Testing 
data for each outcome were then normalized using mean and stan‐
dard deviation estimates from the training data set. To reduce the 
risk of overprediction of survival, deaths in the training data were 
synthetically oversampled as previously described.12,23

We followed a twofold approach for variable selection, with the 
intent to include both relevant variables that risk scores may not 
traditionally incorporate, as well as variables known to be clinically 
significant. Each model was trained with an initial feature set that 
included all available covariates, using 10‐fold cross‐validation to 
select optimal tuning parameters. For each ML model, up to the 15 
most important variables for outcome prediction were retained for 
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inclusion in the final feature set.24 For CART, importance was de‐
fined by how much a variable's inclusion improved model accuracy. 
For RF, importance was defined similarly, but averaged across the 
individual trees in the model and normalized by the standard error. 
For ANN, importance was evaluated by calculating the AUC when 
each variable was used as the only predictor.22

To ensure the inclusion of clinically significant variables, this 
final feature set also included recipient variables identified a pri‐
ori as important predictors of mortality following HTx based on 
literature review: gender, age at transplant, race/ethnicity (white, 
black, Hispanic, other), weight at transplant, ABO blood type, diag‐
nosis category (congenital heart disease, CM, other), payor type at 
transplant (private insurance, public insurance, other), most recent 
creatinine level prior to transplant, total days on waitlist, medical 
condition prior to transplantation (in ICU, hospitalized but not in 
ICU, not hospitalized), ending waitlist status (1A vs. others), implant‐
able defibrillator at listing, LVAD at transplant, ECMO at transplant, 
mechanical ventilation at transplant, and use of inotropic agents at 
transplant.13,16-18,25,26 Donor characteristics identified on literature 
review included gender, age, weight, ABO blood type, and recipient 
blood match level (identical, compatible, incompatible).13,17 Other 
available characteristics were included if they met the criteria de‐
scribed above during model training.

Models were trained on the final feature set using 10‐fold cross‐
validation to select optimal tuning parameters. For comparability to 
previous studies that used cross‐fold validation, model performance 
on the training data was evaluated by the mean AUC for the 10 folds. 
The final trained model was then validated on the separate testing 
set, and testing performance was evaluated by the AUC. The DeLong 
test was used to compare AUC (representing model performance) 
between training and testing data.27 To further assess model perfor‐
mance, we calculated sensitivity and specificity, where sensitivity de‐
scribes the proportion of deceased patients that the model correctly 
classifies as deceased, and specificity describes the proportion of 
surviving patients that the model correctly classifies as surviving. To 
characterize model calibration and fit, we also calculated the calibra‐
tion slope and intercept. Calibration slopes differing from one suggest 
model overfitting to the training data set, while calibration intercepts 
differing from 0 suggest systematic bias toward under‐ or overpre‐
dicting the risk of mortality.28 Analysis was performed using Stata/

IC 14.2 (College Station, TX: StataCorp, LP) and R version 3.4.3 (R 
Foundation for Statistical Computing, Vienna, Austria) with packages 
pROC, caret, cvAUC, DMwR, MICE, and rms.27,29-33

3  | RESULTS

We initially included 2802 patients in the training set and 700 
patients in the testing set. Exclusions due to retransplant and loss 
to follow‐up are summarized for each end‐point in Table 1. Among 
patients retained for analysis, the overall mortality rate was 9% at 
1 year, 15% at 3 years, and 23% at 5 years. The most important fea‐
tures identified when models were trained on all covariates are listed 
in Table 2. Primary diagnoses of CHD or CM, the use of mechanical 
ventilation at transplant, and donor B1 antigen levels were import‐
ant for all RF and CART models. ECMO support at transplant was an 
important feature for all 1‐year models but for none of the 5‐year 
models. Similarly, the recipient's pre‐transplant serum bilirubin level 
was important for all 1‐year models, most 3‐year models, and only 
the RF model of 5‐year mortality. Recipient gender was an import‐
ant feature in all 5‐year models, while donor gender was important 
for most models of 1‐ and 3‐year outcomes. The most important 
features identified in the final models, ranked by descending impor‐
tance, are listed in Table S1.

Performances of the various models in predicting survival (AUC, 
sensitivity, and specificity) are summarized for training and testing 
data in Table 3. RF achieved the best fit to the training data with 
AUCs of 0.74, 0.68, and 0.64 for 1‐, 3‐, and 5‐year mortality, respec‐
tively. RF also achieved the best overall performance on the testing 
data, with AUCs of 0.72, 0.61, and 0.60, for 1‐year, 3‐year, and 5‐
year mortality. However, sensitivity was poor in all models. ANNs 
had the highest overall sensitivity (0.55‐0.58) but the lowest spec‐
ificity (0.63‐0.75) on the training data. RFs had the highest overall 
specificity (0.82‐0.94) but the poorest sensitivity (0.22‐0.34). In the 
testing data, sensitivity declined for RFs and ANNs, but improved 
slightly for CARTs. RF had particularly poor sensitivity (0.07‐0.34), 
while CARTs achieved the highest sensitivity (0.44‐0.49).

Model calibration is described by calibration slope and intercept 
in Table 4. The calibration line shows the linear relationship between 
the actual mortality rate and the predicted mortality risk, where an 

TA B L E  1   Number of pediatric HTx recipients retained for analysis, according to study outcome

Mortality Data set

Pediatric HTx recipients (N)

Transplanted 
during time period

Excluded due to reported survival with last 
known follow‐up preceding time point

Excluded due to 
retransplant Final population

1‐year (2006‐2015) Training 2802 244 13 2545

Testing 700 60 5 635

3‐year (2006‐2013) Training 2160 270 34 1856

Testing 525 55 11 459

5‐year (2006‐2011) Training 1557 227 45 1285

Testing 399 67 12 320
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ideal model would have a slope of 1 and an intercept of 0. RFs had 
the best overall calibration on both training and testing data. On the 
training data, RFs had slopes of 1.07, 0.94, and 0.88 and intercepts 
of −1.21, −1.04, and −0.87 for 1‐year, 3‐year, and 5‐year outcomes, 
respectively. On the testing data, RFs had slopes of 1.25, 0.60, and 
0.86 and intercepts of −0.92, −1.38, and −1.20 for 1‐year, 3‐year, and 
5‐year outcomes, respectively.

4  | DISCUSSION

Existing HTx risk scores demonstrate limited accuracy for the pre‐
diction of post‐transplant outcomes. This limitation has contributed 
to skepticism about the use of a continuous risk scoring system 
for donor heart allocation.34 Recently, a number of studies have 
attempted to improve the prediction of HTx outcomes using ML 
algorithms. However, these studies have demonstrated variable per‐
formance of ML algorithms and rarely focused on a pediatric popula‐
tion, where the limitations of conventional multivariable regression 
are more acute. To address this, we assessed the performance of 3 
ML algorithms specifically in children undergoing HTx. All ML algo‐
rithms demonstrated fair predictive utility for 1‐year mortality, with 
RF achieving the best performance. However, sensitivity was con‐
sistently poor for all algorithms.

All ML models performed best when predicting 1‐year outcomes, 
with predictive utility declining for later outcomes. There are two 
possible explanations for this decline in performance. First, recipi‐
ent death at later time points is more likely to be caused by factors 
not adequately captured in the UNOS Registry. Second, analysis 
of long‐term outcomes included a smaller population of recipients, 
which may have limited the identification of common risk factors in 
a diverse patient cohort. Across all three time points, RF was the 
best‐performing ML model and demonstrated fair predictive utility 
(based on AUC) in both the training and testing sets. However, this 
algorithm had especially poor sensitivity for predicting mortality 
after HTx. Indeed, all algorithms evaluated in the study had unac‐
ceptably low sensitivity, suggesting inherent limitations to predict‐
ing survival after pediatric HTx using ML methods.

Poor sensitivity is often exacerbated by data sets with rare out‐
comes, as ML algorithms tend to be biased toward the more common 
outcome, in this case, survival.35 To reduce this bias, data sets can 
be balanced using oversampling of the rare outcome, undersampling 
of the common outcome, or a combination of the two.12 Synthetic 
oversampling, as we used in this study, selects deceased patients 
and generates new examples based on deceased patients with sim‐
ilar characteristics.23 However, this approach may not capture the 
varied causes of death in a small but heterogeneous population. 
Graft failure is the most common cause of death following pediatric 
HTx, while other common causes include cardiovascular and cere‐
brovascular disease, infection, and respiratory disease.36 Variation 
in causes of death may be difficult to adequately describe with a 
ML model, especially when focusing on the limited population of 
pediatric HTx recipients. Furthermore, the UNOS Registry offers 1‐
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limited information on surgical history, comorbidities in other organ 
systems, social determinants of health, and other factors contribut‐
ing to post‐transplant patient survival. Lack of information on these 
characteristics may fundamentally limit predictive utility of ML algo‐
rithms trained on the registry data alone. A complex set of factors 
affect patient outcomes, but models can only make predictions using 
the data available. Regardless of model sophistication, if a database 
does not adequately capture factors affecting patient outcomes, the 
model cannot capture these relationships. Additionally, although 
models such as ANNs can describe complex relationships among 
variables, increasingly complex models generally require a larger 
amount of data to produce accurate predictions. Capturing these 
relationships may be a challenge in the relatively small pediatric HTx 
population.

Previous studies applying ML algorithms to HTx outcomes in 
adults or combined pediatric and adult populations have reported 
AUCs for short‐term mortality comparable to the results of our 

analysis. Studies examining 1‐year outcomes have reported AUCs 
of 0.59‐0.66 for the best‐performing models, while studies exam‐
ining 5‐year outcomes have reported AUCs of 0.60‐0.67.12,15,16,18 
Studies examining longer‐term outcomes have reported a wider 
range of AUCs, ranging from 0.54 to 0.84 for 9‐ or 10‐year out‐
comes, although this time range was beyond the scope of our 
study.12,13,15,18 While the majority of these studies also used UNOS 
Registry data, they frequently included a broader time range, be‐
ginning with transplants performed as early as 1985.12-14,17,18 This 
may have biased results by not sufficiently accounting for changes 
in wait‐listing criteria, evolution in mechanical circulatory support 
technology, or changes in post‐transplant management during this 
time. Furthermore, these studies were either limited to adults or 
included both adults and children, restricting specific inference for 
the pediatric cohort.12-18

In contrast to our study, most previous studies reported per‐
formance based on a cross‐validated data set, without reporting 

TA B L E  3   Model performance for prediction of 1‐year, 3‐year, and 5‐year all‐cause mortality following pediatric HTx

Mortalitya Model

Sensitivity Specificity AUC

Trainingb Testing Trainingb Testing Trainingb Testing Pc

1‐y RF 0.22 0.07 0.94 0.98 0.74 0.72 0.549

Training N = 2545 ANN 0.58 0.23 0.75 0.94 0.73 0.65 0.075

Testing N = 635 CART 0.39 0.44 0.83 0.81 0.68 0.67 0.967

3‐y RF 0.25 0.13 0.91 0.94 0.68 0.61 0.092

Training N = 1856 ANN 0.55 0.44 0.69 0.69 0.67 0.57 0.038

Testing N = 459 CART 0.41 0.49 0.75 0.67 0.61 0.61 0.998

5‐y RF 0.34 0.34 0.82 0.80 0.64 0.60 0.407

Training N = 1285 ANN 0.55 0.48 0.63 0.63 0.63 0.54 0.058

Testing N = 320 CART 0.43 0.48 0.67 0.64 0.58 0.58 0.904

ANN, artificial neural network; CART, classification and regression tree.
aCensored if transplant performed too late for survival to be reported at time point or if last known follow‐up preceded time point for living patients. 
bReported values are the mean for the 10 cross‐validated folds in the final model. 
cComparison between training and testing AUCs. 

Mortalitya Model

Intercept Slope

Training Testing Training Testing

1 y RF −1.21 −0.92 1.07 1.25

Training N = 2545 ANN −2.07 −1.21 0.60 0.73

Testing N = 635 CART −1.95 −1.98 0.44 0.46

3 y RF −1.04 −1.38 0.94 0.60

Training N = 1856 ANN −1.55 −1.73 0.43 0.26

Testing N = 459 CART −1.54 −1.73 0.39 0.38

5 y RF −0.87 −1.20 0.88 0.86

Training N = 1285 ANN −1.12 −1.43 0.50 0.20

Testing N = 320 CART −1.09 −1.38 0.28 0.33

ANN, artificial neural network; CART, classification and regression tree.
aCensored if transplant performed too late for survival to be reported at time point or if last known 
follow‐up preceded time point for living patients. 

TA B L E  4   Model calibration for 
prediction of 1‐year, 3‐year, and 5‐year 
all‐cause mortality following pediatric HTx
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performance on a separate test set.12-15,17,18 In k‐fold cross‐valida‐
tion, the data set is split randomly into k parts, trained on all but 
one fold, and tested on the last fold. Cross‐validation is useful for 
minimizing the biases that can result from dividing data into training 
and testing sets that contain relatively few cases of the event to be 
predicted.37 However, validation with a separate test set, ideally an 
external data set, may be necessary to accurately assess the predic‐
tive utility of these models for new transplant recipients.38 Although 
we could not validate our models with an external data set, we used 
a held‐out test set for internal validation. The decline in performance 
of the ANNs when validated with the test set suggests these models 
may have overfit the training data, even with the use of cross‐valida‐
tion to select model parameters and the use of synthetic oversam‐
pling to reduce bias toward the more common outcome of survival.

This study has several limitations. First, random selection of 
patients into training and testing data sets does not correspond to 
prediction of outcomes in “future” cohorts. However, this approach 
may have reduced bias compared to division by year of transplant. 
Additionally, there were a large number of censored patients. The 
most common reason for censoring was loss to follow‐up, while cen‐
soring due to retransplant was relatively rare. Binary classification is 
not robust to censoring like models designed to predict survival time, 
so censoring limited the patients that could be included in our study. 
However, these models were selected to be comparable to most pre‐
vious studies. We also considered ML algorithms separately, to cor‐
respond to methods in recent literature. However, a super‐learning 
approach, which combines multiple ML algorithms to create a single 
model, may have improved predictive performance.39 Outside of our 
control, some limitations are inherent to the use of the UNOS Registry 
database. Because some variables in the registry had missing data, we 
excluded variables that were ≥10% missing and used single imputation 
for other missing values. Our decision to exclude variables with high 
missing data rates is similar to prior ML studies, but differs from the 
SRTR approach of treating missing values for certain variables as a 
separate category. Some UNOS variables are also not initially grouped 
in parsimonious categories for analysis. Our results are therefore sen‐
sitive to our chosen grouping of categorical variables.

As shown by the limited predictive utility and especially the low 
sensitivity of ML algorithms in our study, there are inherent difficul‐
ties with applying ML models in clinical settings. Interpretability of 
model output typically must be traded for (expected) improvement 
in predictive value. When examining the outputs of models such as 
RFs or ANNs, observers cannot determine the rationale that causes 
a model to assign a certain risk score. For physicians, this can limit 
the clinical usefulness of these predictions, especially due to the in‐
ability to clearly predict risk according to individual patients’ unique 
circumstances. More broadly, despite the availability of increasingly 
complex analytic approaches for mining large databases, traditional 
analysis triangulating findings across multiple independently col‐
lected data sets can more definitively support a clinical consensus 
about relevant predictors of surgical outcomes.40

Our findings also suggest limitations inherent to evaluating center 
performance based on predictive modeling (eg, comparing observed 

to expected center‐specific survival). Although center performance 
is currently evaluated using predictions derived from the UNOS reg‐
istry, our results suggest that even complex ML approaches cannot 
accurately predict outcomes with the available data. This raises the 
concern that centers could be improperly penalized due to inaccu‐
rate predictions. For example, institutions with a high proportion of 
patients for whom survival is overpredicted by the model might be 
improperly penalized for adverse patient outcomes.

Although our evaluation of ML algorithms demonstrated fair 
predictive utility for 1‐year HTx outcomes, this performance did not 
represent significant improvement over previously published risk 
scoring systems. Therefore, improved prediction of post‐transplant 
mortality risk remains essential to credibly incorporate such predic‐
tive modeling into donor heart allocation algorithms.
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