2017 - Transplantation Science Symposium

This page contains exclusive content for the member of the following sections: TTS, CTS, IPITA, ISODP, IXA, ITA, TID, IHCTAS, IPTA. Log in to view.

Stem Cell and Genome Engineering

4.39 - Generation of hypoimmunogenic induced pluripotent stem cells for allogeneic cell and tissue transplantation

Presenter: Xiaomeng, Hu, San Francisco, United States


Xiaomeng Hu 0,0; Tobias Deuse 0,0,0; Nigel Kooremann 0,0; Alawi Malik 0,0; Dong Wang 0,0; Grigol Tediashvili 0,0; Joachim Velden 0; Sonja Schrepfer 0,0,0

3Transplant and Stem Cell Immunobiology (TSI) Laboratory, UCSF, San Francisco, CA, United States; 4Transplant and Stem Cell Immunobiology (TSI) Laboratory, University Heart Center Hamburg, Hamburg, United States; 5Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, United States; 6Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, United States; 7Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, United States; 8Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; 9Department of Vascular Surgery, Leiden University Medical Center, Leiden, United States; 10Department of Pathology, Marienkrankenhaus , Hamburg, United States

Background: The most urgent problem facing transplantation today is the lack of suitable donor organs and tissues. One possible alternative may be cell transplantation with the aim to replace, repair, or enhance the biological function of the diseased organ. Induced pluripotent stem cells are promising candidates for cell-based therapies. Transplanted autologous iPS cell do not cross histocompatibility barriers since such cells are genetically identical to the transplant recipient. However, for acute diseases such as myocardial infarction, treatment options must be readily available, and generating autologous iPSCs for treatment purposes would take too long. Therefore, identifying alternative methods for preventing rejection of iPSCs would be of great interest. In this study, we generated MHC I and MHCII -deficient mouse iPSCs (miPSCs) via disruption of beta-2-microglobulin and C2TA. The antigenicity was investigated in in vivo and in vitro assays.

Methods: IPSCs were generated from C57BL/6 mouse fibroblasts by non-viral minicircle transfection of the transcription factors c-Myc, Sox-2, Klf4 and Oct4. The CRIPSR/Cas9 technology was used to generate β2m and C2TA knockout miPSCs (β2m-C2TA-/- miPSCs). Unmodified and β2m-C2TA -/- miPSCs as well as their derivates were injected in syngeneic C57BL/6 mice and in allogeneic BALB/c mice. Cellular response was quantified and bioluminescence imaging was performed to assess cell survival.

Results: FACS analysis showed a lack of MHC I and MHC II expression on the β2m-C2TA-/- iPSCs but a normal expression in unmodified iPSCs. After allogeneic transplantation into BALB/c mice, β2m-C2TA-/- miPSCs generated a significantly weaker response in both IFNγ (p<0.01) and IL-4 (p<0.01) ELISPOT assays. Teratoma formation occurred in C57BL/6 mice receiving unmodified iPSCs (100%) and BALB/c mice receiving β2m-C2TA-/- iPSCs (100%), whereas BALB/c mice receiving unmodified iPSCs did not form any teratoma (0%). Indeed, also miPSC derivates, such as cardiomyocytes, endothelial and islet cells showed long-term survival after allogeneic transplantation.

Conclusion: Our results clearly demonstrate the hypoimmunogenicity of β2m-C2TA-/- iPSCs after allogeneic transplantation. Thus, MHC I and MHC II deficient iPSCs might serve an unlimited cell source for the generation of universally compatible “off-the-shelf” cells grafts or tissues in future clinical applications.

Important Disclaimer

By viewing the material on this site you understand and accept that:

  1. The opinions and statements expressed on this site reflect the views of the author or authors and do not necessarily reflect those of The Transplantation Society and/or its Sections.
  2. The hosting of material on The Transplantation Society site does not signify endorsement of this material by The Transplantation Society and/or its Sections.
  3. The material is solely for educational purposes for qualified health care professionals.
  4. The Transplantation Society and/or its Sections are not liable for any decision made or action taken based on the information contained in the material on this site.
  5. The information cannot be used as a substitute for professional care.
  6. The information does not represent a standard of care.
  7. No physician-patient relationship is being established.



Staff Directory


The Transplantation Society
International Headquarters
740 Notre-Dame Ouest
Suite 1245
Montréal, QC, H3C 3X6